Progress in Scaling of Microelectronics and Future Trends

Robert H. Dennard, IBM Fellow Thomas J. Watson Research Center Yorktown Heights, New York

Chronology of the Microelectronics Era

- Phase I, 1926-1957, Discovery
 - Rudimentary Semiconductor Device Concepts
- Phase II, 1958-1968, Basic Technology and Transistor Innovation
 - Early Integrated Circuits
 - Control of Silicon Surface and Insulators
- Phase III, 1969- , Integrated Circuit Production
 - Commercial Applications
 - Continuous Evolution of Capability

(After Prof. C.T. Sah)

ONE - TRANSISTOR DRAM MEMORY CELL

FIELD-EFFECT TRANSISTOR MEMORY

Filed July 14, 1967

3 Sheets-Sheet 1

June 4, 1968

Scaling Principles for MOS Technology

Bits/Chip Increase --- 4X/Gen. (~3 Years)

Areal Density of Magnetic HDD and DRAM

Future CMOS Technology Outlook – 45 nm and Beyond?

- Transistor off-current limits voltage scaling
 - lower voltage can be more energy efficient with lower performance
- Gate-oxide tunneling limits conventional insulator scaling
- Increasing variability problems
 - line edge control and roughness
 - doping fluctuations
 - soft errors (SER)
- Strain engineering and surface orientation (HOT) for higher performance in near-term
- Several alternative structures for future
 - challenging to build, incremental benefit in performance
 - needed to address variability problems

Limits of Oxide Scaling

Wire Resistivity vs. Linewidth

S. M. Rossnagel, et al., 2005 IEDM

Discrete Random Dopant

Number and location of individual dopant atoms:

- statistical fluctuations of *I-V* characteristics
- ~ $10W^{-1/2}$ mV- m^{1/2} (W in m's)

Solution: leave dopants out of channel

- Undoped channel DG structure with thick back-gate oxide
- Back-gate tied to fixed DC potential
 - Creates vertical electric field, which confines inversion layer to top SOI surface and set V_T
 - Short-channel effects can be controlled with thicker T_{body} than UTB/DG
 - Back-gate potential supplements gate work function engineering

The Next Phase of Microelectronics-Technology Maturity

- Device Performance Levels Off
- Circuit Density Fixed or Improving Slowly
- Costs Continue to Decrease for Some Time
 - Stable process
 - Longer product life cycles
 - Focus on cost reduction in manufacturing, e.g. automation
- Emphasis on System Level Performance
 - Parallel to massively-parallel systems
 - Power dissipation becomes a major issue
 - Highly integrated functions on a chip

Changing Integration Strategy

4 MB

Conclusions

- Scaling of Microelectronics Has Made Tremendous Progress in the Last Thirty-Five Years
 - Many challenges have been met
- Traditional Scaling May Slow Dramatically in This Decade
 - Technology will evolve in other ways
- Silicon Technology Will Reach a Very High Plateau
 - Not easily challenged or replaced
- Computing Power will Continue to Grow
 - New applications will drive growth
 - Emphasis on design and energy efficiency