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Phase I, 1926-1957, Discovery

Phase II, 1958-1968, Basic Technology and Transistor
Innovation

Phase III, 1969- , Integrated Circuit Production

   
         

      

        
           

            
       
         

- Rudimentary Semiconductor Device Concepts

- Early Integrated Circuits
- Control of Silicon Surface and Insulators

- Commercial Applications
- Continuous Evolution of Capability

Chronology of the Microelectronics Era

(After Prof. C.T. Sah)
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Scaling Principles for MOS Technology

RESULTS:
2Density increases by    (wire)

Speed increases by        (device)
2Power/circuit decreases by   (wire & voltage)

Wire RC unchanged by scaling
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Future CMOS Technology Outlook
– 45 nm and Beyond?

• Transistor off-current limits voltage scaling
– lower voltage can be more energy efficient with lower performance

• Gate-oxide tunneling limits conventional insulator scaling
• Increasing variability problems

– line edge control and roughness
– doping fluctuations
– soft errors (SER) 

• Strain engineering and surface orientation (HOT) for higher 
performance in near-term

• Several alternative structures for future
– challenging to build, incremental benefit in performance
– needed to address variability problems



2
G

at
e 

C
u

rr
en

t 
D

en
si

ty
 (

A
/c

m
)

Gate Oxide Thickness (nm)

(Gate voltage: 1.2V)

Limits of Oxide Scaling

0 1 2 3 4

1E-8

1E-6

1E-4

1E-2

1E+0

1E+2

1E+4

DRAM

Capacitor

DRAM Array Transistor 
and Low-Power SRAM

High-Performance

Logic

1 Atom

1E+4

1E+2

1E+0

1E-2

1E-4

1E-6

1E-8
0 1 2 3 4

High-Performance
Logic

DRAM Array Transistor
and Low-Power SRAM

DRAM
Capacitor



0 20 40 60 80 100 120 140
1.5

2.0

2.5

3.0

3.5

4.0

4.5

a/r

 ALD Ru liner 
 PVD Ta liner 

1.4

0.95

2.1

3.2

0.8
1.1

2.2

3.5

a/r = 2.2
Surface Scattering 

Cu Resistivity vs Linewidth

(350oC/30 min anneal in FG)

 

 

R
es

is
ti
vi

ty
 (

μΩ
-c

m
)

Linewidth (nm)

Wire Resistivity vs. Linewidth

S. M. Rossnagel, et al., 2005 IEDM



Discrete Random Dopant

Number and location of individual dopant atoms:

       statistical fluctuations of I-V characteristics
-1/2 1/2       ~ 10W  mV-mm  (W in mm's)

Solution: leave dopants out of channel



L. Chang, R. H. Dennard, W. E. Haensch, and R. K. Montoye June 29, 2005 IBM T. J. Watson Research Center1

Back-Gate FET

Undoped channel DG structure with thick back-gate oxide
Back-gate tied to fixed DC potential

– Creates vertical electric field, which confines inversion layer to top SOI 
surface and set VT

– Short-channel effects can be controlled with thicker Tbody than UTB/DG
– Back-gate potential supplements gate work function engineering

Source Drain
Back-Gate Oxide

Gate

Back
Gate



The Next Phase of Microelectronics-
Technology Maturity

Device Performance Levels Off

Circuit Density Fixed or Improving Slowly

Costs Continue to Decrease for Some Time

Emphasis on System Level Performance

   

     

      
       
         
             

    
         
           
           

- Stable process
- Longer product life cycles
- Focus on cost reduction in manufacturing, e.g. automation

- Parallel to massively-parallel systems
- Power dissipation becomes a major issue
- Highly integrated functions on a chip



Changing Integration Strategy

   

   

    

Processors:

Speed

Moderate Power

   

    

    

DRAM:

Low Cost

Low Power

Shor t L

Lower Voltage

Multiple Wiring

  Layers

Cell Density

Sparse Support Circuits

- More bits/sense line     

Cell Capacitance and  

Voltage  

    Merged Processor and DRAM:

Processor based

- lower-voltage, fast devices

- less DRAM density

- higher DRAM speed

Old New



BlueGene/L System 
Buildup

2.8/5.6 GF/s
4 MB

2 Processors

2 Chips

5.6/11.2 GF/s
1.0 GB 

16 Compute Cards

90/180 GF/s
16 GB 

32 Node Cards

2.8/5.6 TF/s
512 GB 

64 Racks, 64x32x32 Chips

180/360 TF/s
32 TB 

Rack

System

Node Card

Compute Card

Chip



Conclusions

Scaling of Microelectronics Has Made Tremendous
Progress in the Last Thirty-Five Years

Traditional Scaling May Slow Dramatically in This Decade

Silicon Technology Will Reach a Very High Plateau

Computing Power will Continue to Grow

     
    

          

       
           

       
          

     
          

- Many challenges have been met

- Technology will evolve in other ways

- Not easily challenged or replaced

- New applications will drive growth
     - Emphasis on design and energy efficiency
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