The Architecture of Complexity: From the Topology of the WWW to the

Structure of the Cell

Albert-László Barabási

Center for Complex Networks Research

Northeastern University

Department of Medicine and CCSB

Harvard Medical School

ww.BarabasiLab.com

Internet

Structure of an organization

Red, blue, or green: departments Yellow: consultants Grey: external experts

www.orgnet.com

Business ties in US biotech-industry

Nodes: companies

investment pharma research labs public biotechnology

Links: collaborations financial R&D

http://ecclectic.ss.uci.edu/~drwhite/Movie

World Wide Web

R. Albert, H. Jeong, A-L Barabási, Nature, 401 130 (1999).

INTERNET BACKBONE

Nodes: computers, routers Links: physical lines

(Faloutsos, Faloutsos and Faloutsos, 1999)

Online communities

Nodes: online user Links: email contact

Kiel University log files 112 days, N=59,912 nodes

Pussokram.com online community; 512 days, 25,000 users.

Ebel, Mielsch, Bornholdtz, PRE 2002.

Holme, Edling, Liljeros, 2002.

SCIENCE COAUTHORSHIP

SCIENCE CITATION INDEX

1,000 Most Cited Physicists, 1981-June 1997

Out of over 500,000 Examined

(see http://www.sst.nrel.gov)

* citation total may be skewed because of multiple authors with the same name

Origin of SF networks: Growth and preferential attachment

(1) Networks continuously expandby the addition of new nodesWWW : addition of new documents

(2) New nodes prefer to link to highly connected nodes.

WWW : linking to well known sites

Barabási & Albert, Science 286, 509 (1999)

GROWTH: add a new node with m links

PREFERENTIAL ATTACHMENT: the probability that a node connects to a node with *k* links is proportional to *k*.

Fitness Model: Can Latecomers Make It?

Bianconi & Barabási, Physical Review Letters 2001; Europhys. Lett. 2001.

protein-gene

interactions

GENOME

PROTEOME

protein-protein interactions

METABOLISM

Bio-chemical reactions

Metabolic Network

Protein Interactions

Jeong, Tombor, Albert, Oltvai, & Barabási, *Nature* (2000); Jeong, Mason, Barabási &. Oltvai, *Nature* (2001); Wagner & Fell, *Proc. R. Soc.* B (2001)

Human Interaction Network

Robustness

Complex systems maintain their basic functions even under errors and failures (cell → mutations; Internet → router breakdowns)

Robustness of scale-free networks

Achilles' Heel of complex networks

R. Albert, H. Jeong, A.L. Barabási, Nature 406 378 (2000)

Hubs and Essentiality

Hubs evolve slower: they are more alike in different organisms [H Fraser et al., Science (2002). Krylov, et al. Genome Res.(2003)]
Hub removal has more phenotypic consequences [Yu et al. Science (2008)] Jeong, Mason, Barabási, and Oltvai, Nature 411, 41-42 (2001)

Epidemic threshold in scale-free networks

: spreading rate of a virus

: density of infected users

Biology:

If a virus is not too infectious, it will die out **Economics and social sciences:** If a product or an idea is not too 'sticky,' it will not succeed.

$$\lambda_{c} = \frac{\langle \mathbf{k} \rangle}{\langle \mathbf{k}^2 \rangle}$$

$$\lambda_{c} \rightarrow 0$$

Pastor Satorras & Vespignani, Physical Review Letters (2001)

THE NATIONAL ACADEMIES

Advisers to the Nation on Science, Engineering, and Medicine

NRC Panel on "Network Science"

What is "network science"?

An attempt to understand networks emerging in nature, technology and society using a unified set of tools and principles.

What is new here?

Despite the apparent differences, many networks emerge and evolve driven by a *fundamental set of laws and mechanism*.

Réka Albert,	Penn State
Hawoong Jeong,	KAIST, Korea
Ginestra Bianconi,	ICTP, Trieste
Kwang-II Goh,	Korea University
Cesar Hidalgo,	Notre Dame
Mark Vidal,	Dana-Farber, Harvard
Michael E. Cusick,	Dana Farber, Harvard
David Valle,	Johns Hopkins
Barton Childs, Johns	Hopkins
Nicholas Christakis,	Harvard
Deok-Sun Lee,	Northeastern University & DF
Juyong Park,	Northeastern University & DF
Zoltan N. Oltvai,	Pitssburgh Medical School
Dashun Wang,	Northeastern University
www.BarabasiLab.com	