#### C&C Prize 受賞記念講演 (2010年11月24日)

## 半導体ナノ薄膜・細線・ドット構造による 電子の量子閉じ込めと先端素子応用の探索 榊 裕之

1.東大大学院(電子工学専攻) 菅野研究室 (1968年 1973年)
 2.東大生産研(1973年 2007年):東大先端研·兼務(1988 - 1998年)
 IBMワトソン研究所(江崎グループ)客員(1976 - 77年)
 ERATO「量子波」、日米国際「量子遷移」(1988-93、94-98年)
 3.豊田工業大学(2007-2010年)

I. Si MOS 電界効果トランジスタ: 「量子閉じ込め」と「2次元電子」の世界への通路

#### **Si MOS FET:**

A gateway to "the quantum confinement" and "two-dimensional (2D) electrons"

大学院(管野卓雄研究室)における「集積回路の中核素子」 Si MOSFET に関する基礎研究 (1968-73年)

Ph. D thesis work on Si MOSFETs : "the core device in LSI electronics" under the guidance of "Prof. T. Sugano" (1968-73) MOS FETの伝導層での量子閉じ込めと2次元電子









MOS素子では、電子が表面近くの極薄 伝導層に閉じ込められる。極低温で、 量子閉じ込めが生じ、2次元性を示す 散乱の多い室温(300K)では、量子 的効果は、効くか、無視できるか。 (Schrieffer, 1955)



**Magnetic Field Direction** 

ゲート電圧Vg が高い時(40V)場合 電子は強く閉じ込められ、面に垂直な 磁場成分のみ、運動に影響(2次元電子) Vg が低いと,他の成分も影響し、バルク 的なSi結晶の対象性を反映(3次元電子)



#### (学振)日米ワークショップ「MOS構造内の2次元電子の物理」 (Hawaii, Summer 1972) IBM, U. of Maryland, U of Tokyo, Siemens etc.

II. 電界効果素子概念の拡張と新構造への発展 Esakiの「超格子」と関連研究との出会いに啓発されて Extending Concepts and Structures of "Field Effect Devices" Inspired by "Superlattice (SL)" Research by Leo Esaki

(II-a) 面内超格子: 超格子とFETとの概念的結合(1975-以降) Planar Superlattices: "Conceptual Blend of SLs and FETs"

(II-b) ヘテロ・ナノ薄膜内の2次元電子伝導とHEMT('76以降) 2D Electron Transport in Hetero-Nano Films and HEMTs

(II-c) 量子細線FETの提案と発展 (1980以降) Proposal and Developments of "Quantum Wire FETs"



#### Esakiの「超格子」研究とその波及効果 (Esaki-Tsu, 1969-70))

L. Esaki

(1) Single Barrier Tunnel Diode (1958)





Tunnel Diode with 10nm-Scale Single Barrier (1958, Nobel Prize 1973) (2) Double Barrier Resonant Tunnel Diode





(3) Multi-Barrier Superlattice Diode (1969-70)



**Bragg Filter for Electrons** 

#### **Imapacts of Superlattice Research**

- A) Promoted MBE and Nano-Technology
- **B) Uses of Quantum Confinements and Tunnelling**
- **C)** Induced Concepts of Quantum Dots and Wires

#### IIa:「面内超格子」:2次元電子の面内運動の量子的な抑制と制御



"FET" と"Superlattice" との概念の結合: ゲートで制御可能な超格子、運動の自由度の削減 Thin Solid Films, 36 (1976) 497-501 © Elsevier Sequoia, S.A., Lausanne-Printed in Switzerland

497

#### 東大・生研:濱崎教授の理解・支援

#### POSSIBLE APPLICATIONS OF SURFACE-CORRUGATED QUANTUM THIN FILMS TO NEGATIVE-RESISTANCE DEVICES\*

H. SAKAKI, K. WAGATSUMA, J. HAMASAKI AND S. SAITO Institute of Industrial Science, University of Tokyo, Tokyo (Japan) (Received August 25, 1975)











#### IIb: ヘテロ超薄膜(超格子)内の電子の面内伝導(1976以降)と ヘテロ構造FET(HEMT)の発展





#### IIb (2): 超薄膜ヘテロ構造の面内伝導の研究の発展: 変調ドープ構造(ベル研)とHEMT(富士通1980)の誕生 超高速FETのその後の発展への関与



# I c 量子細線FETの提案(1980)とその後の発展 1次元電子の散乱抑制、弾道伝導の実証など





Gate voltage Vg

1次元電子の散乱抑制効果 (2k<sub>F</sub>効果)の解析とFET応用 の提案 (Sakaki, 1980)

量子ポイントコンタクト素子の コンダクタンスの量子化 (van Wees et al, 1988)

#### 量子細線FETの発展 作製法の発展と次世代LSI技術としての意義







Inst. of Microelectr. Singaporeなど N.Singh et al, IEDM 2006



### . 量子薄膜・細線・ドット構造の新光素子応用の探索 Esakiの「超格子」および関連研究に啓発されて

Exploration of New Photonic Devices Based on Quantum Films, Wires, and Dots" Inspired by "Superlattice" Research by L. Esaki and Related Studies



# (a) 量子井戸(超格子)赤外検出器(1977以降)基底準位から励起準位への光学遷移を活用



# (b) 量子ドット・レーザの提案(荒川・榊、1982) と発展 Proposal of Quantum Dot Lasers by Arakawa & Sakaki イリノイ大学の友人(K.Hess)の論文に啓発されて Inspired by Dr. K. Hess, U. of Illinois, a long time friend

## Multidimensional quantum well laser and temperature dependence of its threshold current

Y. Arakawa and H. Sakaki Institute of Industrial Science, University of Tokyo, Minato-ku, Tokyo 106, Japan

(Received 19 January 1982; accepted for publication 23 March 1982)







#### -c) 量子ドットを用いた光検出器の研究 (1997以降) Quantum Dot Based Photodetectors



Gate Voltage

- FETの伝導層の近傍にInAs量子ドットを埋めこ んだ素子
- 2) 光照射により各ドットは正孔一個を捕縛。正 に帯電し、閾値は左に移動。持続性光伝導 効果が実現。ゲート電圧で、正孔は消去可能
- 3)素子を小型化して、単一光子の検出も実現
  東芝ケンブリッジ Shields, APL2000(左図)



## 結びと謝辞

東京大学(1964-07) 生産研、先端研、 工学部(電子)など IBM Watson 研究所 (1976-77) **ERATO/ICORP** 研究プロジェクト (1988-93, 94-99)豊田工業大学 (2007 - 2010)先輩・同僚・研究メンバー 共同研究のパートナー 文部科学省の科学研究費、 JRDC/JST、NEDO、**財団**、

企業からのご支援

家族、友人

研究室の関係者や0Bなど(2008 ICPS, ウィン)



豊田工大研究室のメンバー(2009)